Consequences of dark matter self-annihilation for galaxy formation
نویسندگان
چکیده
Galaxy formation requires a process that continually heats gas and quenches star formation in order to reproduce the observed shape of the luminosity function of bright galaxies. To accomplish this, current models invoke heating from supernovae, and energy injection from active galactic nuclei. However, observations of radio-loud active galactic nuclei suggest that their feedback is likely to not be as efficient as required, signaling the need for additional heating processes. We propose the selfannihilation of weakly interacting massive particles that constitute dark matter as a steady source of heating. In this paper, we explore the circumstances under which this process may provide the required energy input. To do so, dark matter annihilations are incorporated into a galaxy formation model within the Millennium cosmological simulation. Energy input from self-annihilation can compensate for all the required gas cooling and reproduce the observed galaxy luminosity function only for what appear to be extreme values of the relevant key parameters. The key parameters are: the slope of the inner density profile of dark matter haloes and the outer spike radius. The inner density profile needs to be steepened to slopes of −1.5 or more and the outer spike radius needs to extend to a few tens of parsecs on galaxy scales and a kpc or so on cluster scales. If neutralinos or any thermal relic WIMP with s-wave annihilation constitute dark matter, their self-annihilation is inevitable and could provide enough power to modulate galaxy formation. Energy from self-annihilating neutralinos could be yet another piece of the feedback puzzle along with supernovae and active galactic nuclei.
منابع مشابه
The Dark Disk of the Milky Way
Massive satellite accretions onto early galactic disks can lead to the deposition of dark matter in disk-like configurations that co-rotate with the galaxy. This phenomenon has potentially dramatic consequences for dark matter detection experiments. We utilize focused, high-resolution simulations of accretion events onto disks designed to be Galaxy analogues, and compare the resultant disks to ...
متن کاملFormation of Large Structures in the Acceleration Universe with a Hybrid Expansion Law
In the current paper, we have studied the effect of dark energy on for-mation where dark energy exists in the background. For this purpose, we used both WMAP9 and Planck data to study how the radius changes with redshift in these mod-els. We used different data sets to fix the cosmological parameters to obtain a solution for a spherical region under collapse. The mechanism of structure formation f...
متن کاملSinglet scalar dark matter in noncommutative space
In this paper, we examine the singlet scalar dark matter annihilation to becoming the Standard Model particles in the non-commutative space. In the recent decades, many candidates of dark matter have been offered, but our information about the nature of dark matter is still limited. There are such particle candidates as scalar matetr, fermion, boson, gauge boson, etc.; however, they have nei...
متن کاملEffects of bound states on dark matter annihilation
We study the impact of bound state formation on dark matter annihilation rates in models where dark matter interacts via a light mediator, the dark photon. We derive the general cross section for radiative capture into all possible bound states, and point out its nontrivial dependence on the dark matter velocity and the dark photon mass. For indirect detection, our result shows that dark matter...
متن کاملEffect of dark matter annihilation on gas cooling and star formation
Context. In the current paradigm of cosmic structure formation, dark matter plays a key role on the formation and evolution of galaxies through its gravitational influence. On microscopic scales, dark matter particles are expected to annihilate amongst themselves into different products, with some fraction of the energy being transferred to the baryonic component. Aims. It is the aim of the pre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008